The World Bank estimates that 21% of communicable diseases in India are related to unsafe water.

PRITHVI PANI: CERAMIC WATER FILTRATION.

I. Executive Summary

In India and the rest of the world, a chronic shortage of clean water causes death and disease. Prithvi Pani, a collaboration between students at the University of Minnesota and TERI University in New Delhi, has created a sustainable venture plan that tackles these health impacts using the tested and affordable technology of ceramic filtration.

Prithvi Pani brings to market Ceramic Water Filter Technology. This technology can purify contaminated water found in most slum settlements making it suitable for drinking thereby mitigating death and disease. Prithvi Pani assembles, packages and distributes the components for the Ceramic Water Filter and is based on customer service. Prithvi Pani also engages in community outreach to educate customers about water quality and how to properly use the Ceramic Water Filter.

Prithvi Pani will start its pilot program in R.K. Puram Slum Sectors 6 and 7 in New Delhi, India. The 850 households who live in the slum are estimated to have an average income of $70 per family per month and suffer from a lack of clean drinking water on a daily basis. By bringing affordable, tested technology to the Indian slum population, Prithvi Pani can help end unnecessary death and chronic sickness caused by contaminated drinking water.

II. Management Team

The team at Prithvi Pani has a strong background in business, design, and engineering as well as an intimate knowledge of the challenges facing our potential customers in regard to clean drinking water. The team is composed of members from the University of Minnesota in the United States and TERI University in Delhi, India.

University of Minnesota – United States
Boaz Fruchtman – MS Civil Engineering
Megan Hoye – MS Public Policy
Shuling Tang – BS Civil Engineering

TERI University – India

Buisness Plan 2
Ahti Westphal – MS Sustainable Design
Heather LaChapelle – MS Public Policy
TERI University in Delhi – India
Ashish Kumar – Mtech Renewable Energy Engineering and Management
Nand Gopal – Mtech Renewable Energy Engineering and Management
Puga Zenthi – Mtech Renewable Energy Engineering and Management
Aishwarya – Mtech Renewable Energy Engineering and Management
Kaveri Ghosh – MBA Infrastructure Management
Shalini – MBA Infrastructure Management
Nisha Vashisht – MBA Infrastructure Management
Neha Bhagat – MBA Business Sustainability

Mentor Team, United States
Kaleel Ahmed – Business Development Post-it® Digital at 3M

III. Introduction

The United Nations and the World Health Organization identify one in every six people worldwide as without access to clean drinking water (UNICEF/WHO, 2008). Lack of clean drinking water kills more children every year than malaria, measles, and HIV/AIDS combined. In India, this is a major and ongoing national public health concern (India National Health Policy, 2002).

The water table in Delhi is depleting at a rate of one foot per year while the urban population is growing, rising by 23% since 2001 (Indian Census 2001, 2011). The local government is facing an increasing challenge to provide clean drinking water to all
their residents. Those most vulnerable to decreased access to clean drinking water are the lowest castes, which populate high density Delhi slums. Policy analysts expect that by the end of 2011, Delhi will have 2.3 million slum dwellers facing daily challenges in gathering enough drinkable water to survive (Kumar Singh, 2010).

The slum of R.K. Puram, Sector 6 and 7 in Delhi consists of approximately 850 families who experience a shortage of clean drinking water daily. Field research by TERI members of Prithvi Pani reveal that waterborne and foodborne diseases, such as Typhoid, Gastroenteritis, and Cholera, are rampant. Residents estimate that at least six people per ten families fall ill every week due to unclean water, blocked street drains, and poor sanitation. With no running water into their homes, residents are forced to go out in search of clean drinking water every day.

One of the difficulties they face is sharing approximately one tap for every 40 households. This water is filtered and provided by the New Delhi JAL Board and is available three times a day – once in the morning, in the afternoon, and again in the evening. In addition, JAL Board provides several other taps, which provide water defined as for ‘daily use’ such as bathing and not consumption. Therefore, while there is not a shortage of water, there is a shortage of clean drinking water. Residents of R.K. Puram are aware that untreated water causes them to get sick, but they have insufficient information and opportunities to address their water quality issues.

IV. Business Description

The Problem
The most pressing problem for the residents of R.K. Puram is the lack of clean drinking water.

Value proposition
Prithvi Pani will mitigate disease and illness in the urban slums of Delhi by selling an affordable and proven water treatment technology. Our technology is ceramic water filtration.

Business description
Prithvi Pani will assemble and package Ceramic Water Filters at a warehouse located near R.K. Puram. Prithvi Pani will provide inventory management and engage in community outreach to educate customers about water quality and how to properly use the Ceramic Water Filter.

Product description
The Ceramic Water Filter System consists of four components: a lid, the ceramic water filter (upper piece), water storage vessel (lower piece), and a built-in spigot. The lid is removed and water is poured into the ceramic filter whereupon it is gravity feed through the the ceramic pores collecting in the lower storage vessel. Clean drinking water can be drawn easily from the tap mounted in the base of the storage vessel. A fine coating of colloidal silver lines the inside of the ceramic filter component, effectively removing bacteria from the water. For more details on this process see Appendix B.
Implementation Plan

Prithvi Pani’s venture plan strategically utilizes local community knowledge to educate and market our product. Breaking our plan into three phases, Prithvi Pani will expand through tested best practices and feedback knowledge that will inform and strengthen our business strategy.

PHASE I – PILOT: 3 months

Stage 1: Months 1-3

1. Acquire 50 Ceramic Water Filters and bring to R.K. Puram.

2. Begin distribution and education programs. Education and distribution programs teach users how to properly use the product and why the use of this technology is important for their health. These education sessions would be provided at places such as health clinics, markets and schools.

3. Collect user feedback and evaluate possible product improvements.

4. Develop education materials that will be distributed with our product. This includes instructions and information about the life of the product.

5. Locate a warehouse facility with a storefront that is close to R.K. Puram.

Stage 2: Months 2-3

1. Develop relationships with ceramic manufacturers.

2. Purchase colloidal silver, plastic vessel, and packaging materials.
fig. 4
Ceramic filters are fired in kilns in the Kampong Chnang province of Cambodia. These kilns are wood fired and take advantage of prunings from nearby mango plantations and rubber plantations.

fig. 5
Rickshaws with secure lock boxes and internal suspension are a just one of the sustainable methods that Prithvi Pani distributes Ceramic Water Filters.
3. Train employees on application of colloidal silver, assembly, and packaging that will minimize breakage during distribution.

4. Sell and distribute product to customers from the Prithvi Pani storefront and via rickshaw to nearby slums.

PHASE II – BUSINESS DEVELOPMENT: Begin the first 6 months

1. Further develop relationships with ceramic manufacturers, colloidal silver, plastic receptacle dealers, and packaging suppliers.

2. Hire additional staff as needed to expand assembly and distribution reach.

3. Introduce product into new slum neighborhoods within Delhi.

4. Open new storefronts or warehouses as needed.

PHASE III – EXPANSION: Beyond the first 3 years.

1. Contract all sales to local retailers.

2. Assume greater focus on broader distribution, marketing and quality assurance.

3. Accelerate product introductory programs in new neighborhoods across Delhi.

4. Open new assembly, storage and sales facilities as needed.

Potential Partnerships

• Suppliers of the raw materials will be essential to assembling the product. This includes a wholesale retailer of colloidal silver, ceramic filter manufacturers, and plastic receptacle suppliers.

• Public health advocacy groups as health clinics to display product and provide free clean water to patients.

• In Phase III, partnerships may expand to local entrepreneurs and retailers to educate and sell the product.

Distribution & Sales Strategy

In the pilot phase, we will have two employees in R.K. Puram to educate the slum dwellers about the health issues associated with unsanitized drinking water. Demonstration of our product will be conducted in R.K. Puram to show how to use the product and prove its effectiveness. The customers can buy the samples directly or they will be informed about the location of our facility so that they can purchase it from there. In Phases II and III we will continue and evolve our practice based on the R.K. Puram model. Parallel to these phases we will networking with potential retailers and sales contractors for expanded distribution. In this way, we can focus more on marketing and education to speed up expansion.

Performing on-site demonstration with our sample products, Prithvi Pani will directly engage with customers to purchase in their neighborhoods and homes. Additional customers can purchase a Ceramic Water Filter by them-
selves at our facility near R.K. Puram. Once our customer base extends to other slums in the Delhi region, we will either utilize environmentally friendly tricycles as our means of distribution or alternatively establish additional assembly facilities – whichever has lower cost. In the future, it is foreseeable that we will need to procure motorized three-wheelers or small trucks to accommodate the growing demand.

V. Business Environment Analysis

Industry background
Currently, the Ceramic Water Filter is being manufactured and sold in several countries including Cambodia, Mexico and Ethiopia. Potters for Peace, nonprofit started by Ron Rivera, has been manufacturing and selling Ceramic Water Filters in Mexico since 1986. International Development Enterprises and the Rural Development Institute has manufactured and sold over 100,000 Ceramic Water Filters in Cambodia, providing clean drinking water to thousands of people. These precedents show that this is a reliable and proven technology that is capable of providing clean drinking water.

Target market
The needs of the market segment we are focused on remain unmet. R.K. Puram. The families of R.K. Puram have an average monthly income of $70 (Institute of Social Studies Trust, New Delhi). On average slum residents disposable annual income ranges from $70 - $80 per family, approximately 5% to 12% of their annual income. This customer segment is the population just above the very base of the socioeconomic pyramid. Targeting this segment allows Prithvi Pani products to be absorbed by people on either side of this initial population. Prithvi Pani seeks to be unique by focusing on this segment of the population which is often over looked due to the higher profitability found in the middle and upper market segments.

Risks
The ceramic water filter portion of the product is fragile. The greatest threat of breakage is during storage and distribution. Breakage can be mitigated with appropriate packaging and sensible distribution practices. The potential cost of this risk has been built into the price of the units. Prithvi Pani sales staff will be trained how to distribute and move the packaged units safely. User education and demonstration of our product will also disseminate these risks in the field.

Potential rises in the price of rare metals will affect the colloidal silver market. The current cost of colloidal silver per filter is $0.24, (April 2011) a raise in this cost will have minimal affect until the cost of colloidal silver increases by 200%. By creating alliances and fixed cost agreements for this mineral, the impacts of price fluctuation will be minimized.

Lastly, due to the simplicity of the technology it is subject to imitation and garners low barriers to market entry. We will attempt to mitigate this by building relationships within the communities we work. Additionally we will seek to build communications with other organizations, businesses, and NGO’s in the water filtration sector to optimize market share.

Competition: Why Prithvi Pani?
As discussed above, international nonprofits manufacture similar products. What these
companies did not provide was sustained education and marketing to support the demand for the technology. Their business models targeted demographic segments at the very base of the socioeconomic pyramid in rural communities, where education and resources were not only low, but chronically unobtainable.

Prithvi Pani will focus on a market segment that is slightly above the bottom of the pyramid with some variable, but sustained income. Our profit driven, customer-centered model will combine user education about water contamination and product solutions with a tangible service presence to acquire a reliable reputation. Unlike other competitors, our model will establish a sustained and loyal market segment.

Other companies have brought this technology to market in rural areas in India, but have been unsuccessful and to our knowledge it has not been implemented in any urban slum conditions. Our research has shown that this is due to two reasons: 1. social barriers to adoption and 2. lack of sustained customer service. In our pilot phase Prithvi Pani will test these assumptions.

Alternatives
In addition to other ceramic water filter competitors, the practice of boiling water is an alternative solution for sanitizing drinking water that could be grounds for competition. The cost of fuel for boiling water is a heavy burden for urban slum dwellers. This will not be a viable competitor once potential buyers are made aware of the ceramic water filtration technology and Prithvi Pani prices. While boiling water is effective in removing more than 96% of contaminants from water, ceramic water filters will remove between 98-99% of contaminants and do it for a fraction of the cost (Figure 5-1).

![Figure 5-1](image)

VI. Marketing Plan

Marketing strategy
Effective communication and education are key components to implementing a new technology, especially when the target market is in developing countries. Successfully encouraging customers to adopt new methods of cleaning their water requires significant consumer education. Prithvi Pani will provide
PRITHVI PANI
पृथ्वी पानी

Fig. 5
Prithvi Pani's striking logo can
grow to become a symbol
of quality synonymous with
ceramic water filtration. Prithvi
means earth and Pani means
water in the Hindi language.

Staff with the necessary training to equip them with the knowledge to provide education to customers regarding basic health and the virtues of clean drinking water. Based on this knowledge, potential customers will see the value and need to purchase our product while providing them with information important for their well-being.

Prithvi Pani will market using a social dimension that safe water makes children healthy. Appealing to parents, especially mothers, and educating the community on water quality issues will be imperative to acquiring customers. Early adopters will greatly influence secondary adopters and can endorse the product to their peers, relatives, and neighbors. This is essential to selling a product in a community where word-of-mouth is the most efficient advertising.

Finally, the Ceramic Water Filter is a convenience product, and the benefits should be demonstrated in the right environment and with the right communication media. Visual demonstrations at market places, schools, offices, and health clinics will be especially valuable. Prithvi Pani employees will regularly visit the slums to advertise our product, follow-up with their clients, and stay connected to the community.

Pricing strategy
Our goal is to reach as many users as possible while undercutting potential competitors. Based on disposable income of Prithvi Pani's target market and the costs associated with production, our per-unit price is $4.95. Replacement units will cost $2.80. This price gives us competitive advantage over other current technologies on the market. This price also allows a new market segment to have access to filtering technologies on a point of use basis. These prices are very reasonable for the slum residents, who have a disposable income of up to $110 per month.

VII. Financial Plan

Detailed forecasted income statement including sales estimates and operations costs are attached in Appendix C.
Based on cost research, pricing for the Ceramic Water Filtration system is set at $4.95 (223 INR) and the replacement filter at $2.80 (126 INR).

The forecasts are based on sales meeting 100 units/month by the end of the first year (starting after Stage 1 of the Pilot is complete - anticipated June 2012). In addition, the forecast uses a 60% return customers assumption for replacement unit estimates. Projections also include a conservative secondary source of revenue from reclaimed unit material recycling.

The projections below assume that the first financial year starts in June of 2012.
Financial Phasing
There are two components to the required capital for start-up. The following will cover what is necessary to complete Stage 1 of the Pilot Phase.

1. Initial capital to purchase Pilot Phase filters and transport them to Delhi (Stage 1 – Summer 2011). **Cost:** $2,400

2. Travel, lodging and stipend costs for American Prithvi Pani partners to work on the ground in Delhi to complete Stage 1 of the Pilot Phase as well as attend the Acara Summer Institute (a requisite, but not a component of the business plan) and coordinate with our Indian Partner through May 2012. **Cost:** $6,600

Subtotal: $9,000

To enter into Stage 2 of the Pilot Phase, Prithvi Pani will need additional start-up costs until Prithvi Pani has cash flow. According to projections, this will take an estimated nine months. Costs will fall under the following 2 categories.

1. Initial capital for facility, equipment and material costs for the Pilot Phase (Stage 2 – June 2012). **Cost:** $5,300

2. Capital to cover travel, living, operating costs, the cost of goods and a nominal monthly stipend for two founding members. **Cost:** $31,000

Subtotal: $36,300

It is assumed that the initial cash infusion of $9,000 would be received as a one-time gift to test researched assumptions and further investigate feasibility. The $31,000 requested for implementing the remainder of the Pilot Phase and the succeeding phases will be paid back with interest at a rate of 5%.
Appendix A: Technology

Ceramic filtration is the use of porous ceramic (fired clay) to filter microbes or other contaminants from drinking water. Pore size can be made small enough to remove virtually all bacteria and protozoa by size exclusion. Small-scale ceramic filtration has a long history, having been used in various forms since antiquity. Locally produced ceramic pot-style filters have the advantage of being lightweight, portable, relatively inexpensive, chemical free, low-maintenance, effective, and easy to use. The filters provide for removal of microorganisms from water by gravity filtration through porous ceramics, with typical flow rates of 1-3 liters per hour (Potters for Peace). This equates to 25 liters of drinkable water every day (IDE case study).

They cool the treated water through evapotranspiration and, used with a proper storage receptacle, safely store water for use. There are no significant taste issues, require no external energy source, such as UV lamps. They only need to be replaced once every year with proper care and maintenance. The ceramic filter surface is regenerated through regular scrubbing to reduce surface deposits which slow filtration rate, so the useful life of a ceramic filter depends on the frequency of cleaning, and thus the quality of water being treated, and the thickness, since repeated cleaning will eventually wear away the filter surface.

Appendix B: Employee Training

Topics covered throughout the training course for Phase 1 are as follows.

Technical Aspects
- Assembly process: Coating the inside of the Ceramic Water Filter with colloidal silver, stacking the Ceramic Water Filter inside the plastic bucket.
- Packaging process: Packing the Ceramic Water Filter in cardboard to prevent cracking and breakage in transport.
- Scientific knowledge: Learning how the Ceramic Water Filter purifies contaminated water.

Management Aspects
- Education: Importance and benefits of a reliable supply of clean drinking water, proper use of Ceramic Water Filters.
- Marketing Management: Technique of motivation and persuasion.
- Financial Management: Estimation of unit cost, possible arrangements of subsidies, support from social organizations, principles of accounting.
- Office Management: Record keeping of individual beneficiaries, methods of maintaining the accounts, payments made to Priti Patel, etc.

Customer Relations
- Surveys: Methods of conducting a survey, keep records of the sur
Appologies, etc.

- Relationship Management Strategies focused on increasing customer satisfaction, loyalty, and profitability by leveraging superior customer knowledge acquired, stored, and acted upon with the aid of the Ceramic Water Filter.

Appendix C: Financial Plan

Operational Costs

The following is a breakdown of cost estimates for operational and procurement expenses:

<table>
<thead>
<tr>
<th>Direct costs</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket & lid</td>
<td>$0.40</td>
</tr>
<tr>
<td>Silver (CS)</td>
<td>$0.30</td>
</tr>
<tr>
<td>CWF</td>
<td>$1.10</td>
</tr>
<tr>
<td>Total</td>
<td>$1.80</td>
</tr>
</tbody>
</table>

Start-up Costs

<table>
<thead>
<tr>
<th></th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Up-front</td>
<td>4550</td>
</tr>
<tr>
<td>Assembly equip.</td>
<td>750</td>
</tr>
<tr>
<td>Initial Units</td>
<td>2,200</td>
</tr>
<tr>
<td>Total</td>
<td>$6,850.00</td>
</tr>
</tbody>
</table>

Operating Costs/Month

<table>
<thead>
<tr>
<th></th>
<th>Yr 1</th>
<th>Yr 2 & 3</th>
<th>Yr 4</th>
<th>Yr 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>$120</td>
<td>$180</td>
<td>$300</td>
<td>$420</td>
</tr>
<tr>
<td>Marketing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertising</td>
<td>$30</td>
<td>$100</td>
<td>$150</td>
<td>$100</td>
</tr>
<tr>
<td>Community Outreach</td>
<td>$75</td>
<td>$150</td>
<td>$150</td>
<td>$200</td>
</tr>
<tr>
<td>Distribution</td>
<td>$20</td>
<td>$40</td>
<td>$40</td>
<td>$80</td>
</tr>
<tr>
<td>Utilities</td>
<td>$50</td>
<td>$50</td>
<td>$70</td>
<td>$70</td>
</tr>
<tr>
<td>Fixed Costs (rent, tax, etc.)</td>
<td>$0</td>
<td>$450</td>
<td>$600</td>
<td>$600</td>
</tr>
<tr>
<td>Total</td>
<td>$335.00</td>
<td>$970.00</td>
<td>$1,310.00</td>
<td>$1,470.00</td>
</tr>
</tbody>
</table>
Operating Costs & Revenues (Years 2-5)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Op Costs</td>
<td>$31,155</td>
<td>$3,205</td>
<td>$2,205</td>
<td>$1,005</td>
<td>$1,005</td>
</tr>
<tr>
<td>COGS</td>
<td>$360</td>
<td>$720</td>
<td>$402</td>
<td>$128</td>
<td>$128</td>
</tr>
<tr>
<td>Units sold</td>
<td>20</td>
<td>400</td>
<td>460</td>
<td>529</td>
<td>608</td>
</tr>
<tr>
<td>Revenue</td>
<td>$980</td>
<td>$1,960</td>
<td>$2,254</td>
<td>$2,592</td>
<td>$2,981</td>
</tr>
<tr>
<td>Income</td>
<td>$30,535</td>
<td>$3,965</td>
<td>$779</td>
<td>$635</td>
<td>$894</td>
</tr>
<tr>
<td>Reclaim Revs</td>
<td>$13</td>
<td>$26</td>
<td>$30</td>
<td>$34</td>
<td>$40</td>
</tr>
<tr>
<td>Loan Interest</td>
<td>-$3,000</td>
<td>-$6,000</td>
<td>-$6,000</td>
<td>-$6,000</td>
<td>-$6,000</td>
</tr>
</tbody>
</table>

*Note: June 2011-2012 is not included in these figures because Stage 1 financials would still be in effect and full-time Prithvi Pani founders could not yet be on the ground in Delhi, India.

** Interest Rate (ROI) of 5%. Accruing period begins after Stage 1 of the Pilot Phase is complete. Additional ROI for initial investors will become available after all original loans and interest are paid off. Projects anticipate that this will occur after the 4th year at a rate of approximately 12%.
YEAR 1 Break Down

<table>
<thead>
<tr>
<th>Expense</th>
<th>Qty</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel to SI</td>
<td>1</td>
<td>$900</td>
<td></td>
</tr>
<tr>
<td>Filters for SI</td>
<td>4</td>
<td>$200</td>
<td></td>
</tr>
<tr>
<td>Travel to Delhi</td>
<td>2</td>
<td></td>
<td></td>
<td>$3,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel Stipend</td>
<td>2</td>
<td></td>
<td></td>
<td>$900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living Expenses</td>
<td>2</td>
<td></td>
<td></td>
<td>$1,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Filters (Stage 1)</td>
<td>50</td>
<td></td>
<td></td>
<td>$2,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delhi Partner Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$100</td>
<td>$100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td></td>
<td>Subtotals</td>
<td>$1,100</td>
<td>$0</td>
<td>$7,600</td>
<td>$50</td>
<td>$0</td>
<td>$0</td>
<td>$100</td>
<td>$100</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>$9,000</td>
<td></td>
</tr>
</tbody>
</table>

YEAR 2 Break Down

<table>
<thead>
<tr>
<th>Expense</th>
<th>Qty</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel to Delhi</td>
<td>2</td>
<td>$3,600</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td></td>
</tr>
<tr>
<td>Travel Stipend</td>
<td>2</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td></td>
</tr>
<tr>
<td>Living Expenses</td>
<td>2</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$1,100</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
</tr>
<tr>
<td>Pilot (Stage 2)</td>
<td></td>
<td>$7,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotals</td>
<td>$12,000</td>
<td>$1,400</td>
<td>$1,400</td>
<td>$1,400</td>
<td>$1,400</td>
<td>$1,400</td>
<td>$1,400</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>$20,200</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: References

Muralidharan, Aswathi. Microfinancing Cycle Rishaws. DARE. (Dec. 2009) www.dare.co.in

TEHI Field Research. Collected by TEHI team members in R.K. Puram in February and March, 2011 through interviews and surveys.

